
Picking a winner
cost models for evaluating
stream-processing programs

Jonathan Dowland <jon.dowland@ncl.ac.uk>
UK Systems ‘21

StrIoT

https://github.com/striot/striot

StrIoT operators

Filter
streamFilter α → α

streamFilterAcc α → α

Map
streamMap α → β

streamScan α → β

Window
streamWindow α → [α]

streamExpand [α] → α

Combine
streamMerge [α] → α

streamJoin α → β → (α,β)

Logical Optimiser: term-rewriting

streamFilter p (streamMerge [s1,s2…])

= streamMerge [streamFilter p s1,

 streamFilter p s2, …]

Rewrite rule implementation

-- streamFilter f >>> streamFilter g = streamFilter (\x -> f x && g x)

filterFuse :: RewriteRule
filterFuse (Connect (Vertex a@(StreamVertex _ Filter (p:_) _ _))
 (Vertex b@(StreamVertex _ Filter (q:_) _ _))) =

let c = a { parameters = [[| (\p q x -> p x && q x) $(p) $(q) |]] }

in Just (removeEdge c c . mergeVertices (`elem` [a,b]) c)

Cost models for evaluation

Queuing system model

Mitrani, I. (1997). Probabilistic Modelling. Cambridge: Cambridge
University Press. doi:10.1017/CBO9781139173087.001

Utilisation (ρ) = arrival rate (λ) / service rate (μ)

λin

µm

𝑓·λin

µf

𝑓

λin

1 - 𝑓·λin

streamFilterstreamMap

Modelling StrIoT operators

��

Encoding queueing theory properties

data StreamVertex = StreamVertex
{ vertexId :: Int
, operator :: StreamOperator
, parameters :: [ExpQ]
, intype :: String
, outtype :: String
, serviceTime:: Double }

data StreamOperator = Map | Filter Double {- selectivity -}
| Expand | Window | Merge | Join | Scan
| FilterAcc Double {- selectivity -}
| Source Double {- arrival rate -}
| Sink deriving (Show,Ord,Eq)

Re-write rules and queueing theory

-- streamFilter f >>> streamFilter g = streamFilter (\x -> f x && g x)

filterFuse :: RewriteRule
filterFuse (Connect (Vertex a@(StreamVertex _ (Filter sel1) (p:_) _ _ s1))
 (Vertex b@(StreamVertex _ (Filter sel2) (q:_) _ _ s2))) =

let c = a { operator = Filter (sel1 * sel2)
 , parameters = [[| (\p q x -> p x && q x) $(p) $(q) |]]
 , serviceTime = s1 + (sel1 * s2) }

in Just (removeEdge c c . mergeVertices (`elem` [a,b]) c)

Example outcome #1 of 3

Reject over-utilised operators

Input program: over-utilised operator

streamSource tempSensor

streamSource tempSensor streamMerge

streamFilter over100

streamMap f

streamSinkstreamSource tempSensor

λ = 1

λ = 1

λ = 1

λ = 3

µ = 1

𝑓 = 1/2

µ = 3/2

Re-written program: no over-utilised operators

streamSource tempSensor

streamSource tempSensor

streamMerge

streamFilter over100

streamMap f

streamSinkstreamSource tempSensor
λ = 1

µ = 3/2

streamFilter over100
λ = 1

λ = 1

𝑓 = 1/2

𝑓 = 1/2

𝑓 = 1/2

λ = 1/2

λ = 1/2 λ = 3/2

streamFilter over100

Example outcome #2 of 3

Discard plans with Nodes above a utilisation threshold

Input program

streamSource tempSensor

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamSink

7 expensive operations (each ρ = 1)

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

Partition assignment (no max. Node Utilisation threshold)

streamSource tempSensor

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

2 Nodes

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp streamSink

Partition assignment (max. Node Utilisation = 3)

streamSource tempSensor

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

3 Nodes

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp streamSink

Example outcome #3 of 3

Reduce required Cloud nodes by increasing Edge utilisation

Input program

streamSource tempSensor

streamSource tempSensor

streamMerge

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamSink

maxNodeUtil = 3.0

streamMap expensiveOp

Partition assignment (input program)

streamSource tempSensor

streamSource tempSensor

streamMerge

streamMap expensiveOp

streamMap expensiveOp

4 Nodes
(number of sources+2)

streamMap expensiveOp

streamSink

streamMap expensiveOp

Partition assignment (re-written program)

streamSource tempSensor

streamMap expensiveOp

streamSource tempSensor

streamMap expensiveOp

3 Nodes

streamMerge

streamMap expensiveOp

streamMap expensiveOp

streamMap expensiveOp

streamSink

Future work

● Heterogeneous nodes
○ (capabilities, limitations, costs…)

● Non-functional requirements
○ Bandwidth

● Further modelling work
● Operator semantics (streamWindow)
● quickSpec - machine-assisted law discovery

Thank you!
Q&A

Jonathan Dowland <jon.dowland@ncl.ac.uk>
UK Systems ‘21

